हिंदी

Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola whose vertex is O(0, 0) and focus at (–7, 0).

योग

उत्तर

The vertex of the required parabola is (0, 0) and focus is at (–7, 0).

∴ its axis is along X-axis

∴ its equation is of the form y2 = 4ax  ...(1)

Then the focus is (a, 0) which is given to be (– 7, 0)

∴ a = – 7

∴ by (1), the equation of the parabola is y2 = – 28x.

shaalaa.com
Conic Sections - Parabola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.1 [पृष्ठ १४९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.1 | Q 4 | पृष्ठ १४९

संबंधित प्रश्न

Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

5y2 = 24x


Find co-ordinate of focus, equation of directrix, length of latus rectum and the co-ordinate of end points of latus rectum of the parabola:

y2 = –20x


Find the equation of the parabola with vertex at the origin, axis along X-axis and passing through the point (2, 3)


Find coordinates of the point on the parabola. Also, find focal distance.

2y2 = 7x whose parameter is –2


Find the area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the end points of latus rectum.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find its focus.


Find coordinate of focus, vertex and equation of directrix and the axis of the parabola y = x2 – 2x + 3


Find the equation of tangent to the parabola y2 = 12x from the point (2, 5)


Find the equation of tangent to the parabola y2 = 36x from the point (2, 9)


Find the equation of common tangent to the parabola y2 = 4x and x2 = 32y


Find the equation of the locus of a point, the tangents from which to the parabola y2 = 18x are such that some of their slopes is –3


A circle whose centre is (4, –1) passes through the focus of the parabola x2 + 16y = 0.

Show that the circle touches the directrix of the parabola.


Select the correct option from the given alternatives:

The length of latus rectum of the parabola x2 – 4x – 8y + 12 = 0 is _________


Select the correct option from the given alternatives:

If the focus of the parabola is (0, –3) its directrix is y = 3 then its equation is


Select the correct option from the given alternatives:

The coordinates of a point on the parabola y2 = 8x whose focal distance is 4 are _______


Select the correct option from the given alternatives:

Equation of the parabola with vertex at the origin and directrix x + 8 = 0 is __________


Select the correct option from the given alternatives:

The area of the triangle formed by the line joining the vertex of the parabola x2 = 12y to the endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

The equation of the parabola having (2, 4) and (2, –4) as endpoints of its latus rectum is _________


Select the correct option from the given alternatives:

If the parabola y2 = 4ax passes through (3, 2) then the length of its latus rectum is ________


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

2y2 = 17x


Answer the following:

For the following parabola, find focus, equation of the directrix, length of the latus rectum, and ends of the latus rectum:

5x2 = 24y


Answer the following:

Find the equation of the tangent to the parabola y2 = 8x at t = 1 on it


Answer the following:

The tangent at point P on the parabola y2 = 4ax meets the y-axis in Q. If S is the focus, show that SP subtends a right angle at Q


Let the tangent to the parabola S: y2 = 2x at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then, the area (in sq.units) of the triangle PQR is equal to ______.


Let y = mx + c, m > 0 be the focal chord of y2 = –64x, which is tangent to (x + 10)2 + y2 = 4. Then, the value of `4sqrt(2)` (m + c) is equal to ______.


If a line along a chord of the circle 4x2 + 4y2 + 120x + 675 = 0, passes through the point (–30, 0) and is tangent to the parabola y2 = 30x, then the length of this chord is ______.


If the normal at the point (1, 2) on the parabola y2 = 4x meets the parabola again at the point (t2, 2t), then t is equal to ______.


The centre of the circle passing through the point (0, 1) and touching the parabola y = x2 at the point (2, 4) is ______.


Which of the following are not parametric coordinates of any point on the parabola y2 = 4ax?


The equation of the parabola whose vertex and focus are on the positive side of the x-axis at distances a and b respectively from the origin is ______.


Let a variable point A be lying on the directrix of parabola y2 = 4ax (a > 0). Tangents AB and AC are drawn to the curve where B and C are points of contact of tangents. The locus of centroid of ΔABC is a conic whose length of latus rectum is λ, then `λ/"a"` is equal to ______.


If vertex of a parabola is (2, –1) and the equation of its directrix is 4x – 3y = 21, then the length of its latus rectum is ______.


The cartesian co-ordinates of the point on the parabola y2 = –16x, whose parameter is `1/2`, are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×