मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Find the Dimensions of Magnetic Field B. the Relevant Equation Are F = Q E , F = Q V B , and B = μ 0 I 2 π a ; Where F is Force, Q is Charge, V is Speed, I is Current, and a is Distance. - Physics

Advertisements
Advertisements

प्रश्न

Find the dimensions of magnetic field B.
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.

बेरीज

उत्तर

Magnetic field,
\[B = \frac{F}{qv}\]
\[\text{ Here, } \left[ F \right] = {\left[ {MLT}^{- 2} \right]}, \left[ q \right] = {\left[ AT \right]} \text{ and } \left[ v \right] = {\left[ {LT}^{- 1} \right]} \]
\[\text{ So, dimension of magnetic field }, [B] = \frac{\left[ {MLT}^{- 2} \right]}{\left[ AT \right] \left[ {LT}^{- 1} \right]} = \left[ M L^0 T^{- 2} A^{- 1} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Introduction to Physics - Exercise [पृष्ठ ९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 1 Introduction to Physics
Exercise | Q 3.2 | पृष्ठ ९

संबंधित प्रश्‍न

“Every great physical theory starts as a heresy and ends as a dogma”. Give some examples from the history of science of the validity of this incisive remark


If all the terms in an equation have same units, is it necessary that they have same dimensions? If all the terms in an equation have same dimensions, is it necessary that they have same units?


A dimensionless quantity


The dimensions ML−1 T−2 may correspond to


Find the dimensions of frequency .


Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Test if the following equation is dimensionally correct:
\[h = \frac{2S cos\theta}{\text{ prg }},\]
where h = height, S = surface tension, ρ = density, I = moment of interia.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?


Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


Which of the sets given below may represent the magnitudes of three vectors adding to zero?


The component of a vector is 


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


Suppose \[\vec{a}\] is a vector of magnitude 4.5 units due north. What is the vector (a) \[3 \vec{a}\], (b) \[- 4 \vec{a}\] ?


Let A1 A2 A3 A4 A5 A6 A1 be a regular hexagon. Write the x-components of the vectors represented by the six sides taken in order. Use the fact the resultant of these six vectors is zero, to prove that
cos 0 + cos π/3 + cos 2π/3 + cos 3π/3 + cos 4π/3 + cos 5π/3 = 0.
Use the known cosine values to verify the result.


Prove that \[\vec{A} . \left( \vec{A} \times \vec{B} \right) = 0\].


In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an enemy submarine is observed to be 80 s. If the speed of sound in water is 1460 ms-1. What is the distance of an enemy submarine? 


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×