मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Test If the Following Equations Are Dimensionally Correct: H = 2 S C O S θ Prg , - Physics

Advertisements
Advertisements

प्रश्न

Test if the following equation is dimensionally correct:
\[h = \frac{2S cos\theta}{\text{ prg }},\]
where h = height, S = surface tension, ρ = density, I = moment of interia.

बेरीज

उत्तर

\[h = \frac{2S \cos \theta}{\text{ prg }}\]
Height, [h] = [L]
Surface Tension,
\[\left[ S \right] = \frac{\left[ F \right]}{\left[ L \right]} = \frac{\left[ {MLT}^{- 2} \right]}{\left[ L \right]} = \left[ {MT}^{- 2} \right]\]
Density,
\[\left[ \rho \right] = \frac{\left[ M \right]}{\left[ I \right]} = \left[ {ML}^{- 3} T^0 \right]\]
Radius, [r] = [L], [g]= [LT−2]
Now,
\[\frac{2\left[ S \right]\cos \theta}{\left[ \rho \right]\left[ r \right]\left[ g \right]} = \frac{\left[ {MT}^{- 2} \right]}{\left[ {ML}^{- 3} T^0 \right] \left[ L \right] \left[ {LT}^{- 2} \right]} = \left[ M^0 L^1 T^0 \right] = \left[ L \right]\]
Since the dimensions of both sides are the same, the equation is dimensionally correct.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Introduction to Physics - Exercise [पृष्ठ १०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 1 Introduction to Physics
Exercise | Q 18.1 | पृष्ठ १०

संबंधित प्रश्‍न

India has had a long and unbroken tradition of great scholarship — in mathematics, astronomy, linguistics, logic and ethics. Yet, in parallel with this, several superstitious and obscurantistic attitudes and practices flourished in our society and unfortunately continue even today — among many educated people too. How will you use your knowledge of science to develop strategies to counter these attitudes ?


A dimensionless quantity


A unitless quantity


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure


Test if the following equation is dimensionally correct:
\[V = \frac{\pi P r^4 t}{8 \eta l}\]

where v = frequency, P = pressure, η = coefficient of viscosity.


Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?


Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?


Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


The magnitude of the vector product of two vectors \[\left| \vec{A} \right|\] and \[\left| \vec{B} \right|\] may be

(a) greater than AB
(b) equal to AB
(c) less than AB
(d) equal to zero.


Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


A mosquito net over a 7 ft × 4 ft bed is 3 ft high. The net has a hole at one corner of the bed through which a mosquito enters the net. It flies and sits at the diagonally opposite upper corner of the net. (a) Find the magnitude of the displacement of the mosquito. (b) Taking the hole as the origin, the length of the bed as the X-axis, it width as the Y axis, and vertically up as the Z-axis, write the components of the displacement vector.


Let \[\vec{a} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j} + 5 \vec{k}\] Find the angle between them.


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


High speed moving particles are studied under


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×