Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` for the following function.
x2 – xy + y2 = 1
उत्तर
x2 – xy + y2 = 1
Differentiating both side with respect to x,
`"d"/"dx" (x^2) - "d"/"dx" (xy) + "d"/"dx" (y^2) = "d"/"dx"(7)`
`2x - [x "d"/"dx" (y) + y "d"/"dx" (x)] + 2y "dy"/"dx" = 0`
`2x - [x "dy"/"dx" + y * 1] + 2y "dy"/"dx" = 0`
`2x - x"dy"/"dx" - y + 2y "dy"/"dx"` = 0
`"dy"/"dx" [2x - x] = y - 2x`
`"dy"/"dx" = (y - 2x)/(2y - x)`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`5/x^4 - 2/x^3 + 5/x`
Differentiate the following with respect to x.
`(sqrtx + 1/sqrtx)^2`
Differentiate the following with respect to x.
`e^x/(1 + e^x)`
Differentiate the following with respect to x.
x3 ex
Differentiate the following with respect to x.
(ax2 + bx + c)n
Differentiate the following with respect to x.
`1/sqrt(1 + x^2)`
Differentiate the following with respect to x.
xsin x
Find `"dy"/"dx"` of the following function:
x = log t, y = sin t
Differentiate sin3x with respect to cos3x.
If y = sin(log x), then show that x2y2 + xy1 + y = 0.