Advertisements
Advertisements
प्रश्न
Differentiate the following with respect to x.
`5/x^4 - 2/x^3 + 5/x`
उत्तर
Let y = `5/x^4 - 2/x^3 + 5/x`
`"dy"/"dx" = 5 "d"/"dx" (1/x^4) - 2"d"/"dx"(1/x^3) + 5"d"/"dx" (1/x)`
`= 5"d"/"dx" (x^-4) - 2 "d"/"dx" (x^-3) + 5x^-1`
= 5(-4a-4-1) - 2(- 3x-3-1) + 5(-1)x-1-1
= - 20x-5 + 6x-4 - 5x-2
`= (-20)/x^5 + 6/x^4 - 5/x^2`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
ex sin x
Differentiate the following with respect to x.
x3 ex
Find `"dy"/"dx"` for the following function.
x2 – xy + y2 = 1
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
If xm . yn = (x + y)m+n, then show that `"dy"/"dx" = y/x`
Find `"dy"/"dx"` of the following function:
x = a cos3θ, y = a sin3θ
Find y2 for the following function:
y = e3x+2
Find y2 for the following function:
x = a cosθ, y = a sinθ
If y = sin(log x), then show that x2y2 + xy1 + y = 0.
If xy . yx , then prove that `"dy"/"dx" = y/x((x log y - y)/(y log x - x))`