Advertisements
Advertisements
प्रश्न
Find y2 for the following function:
x = a cosθ, y = a sinθ
उत्तर
x = a cos θ, y = a sin θ
`"dx"/("d"θ)`= a(-sinθ) = -a sinθ …….. (i)
`"dy"/("d"θ)` = a(cosθ)
`therefore y_1 = "dy"/"dx" = ("dy"/("d"θ))/("dx"/("d"θ)) = ("a" cos theta)/(- "a" sin theta)`
`y_1 = "dy"/"dx"` = - cot θ
`y_2 = ("d"^2y)/"dx"^2 = - (- "cosec"^2 theta) ("d"theta)/"dx"`
`= "cosec"^2theta ("d"theta)/"dx"`
`= "cosec"^2theta 1/("dx"/("d"theta))`
`=> "cosec"^2 theta xx ("cosec" theta)/(- "a")`
`= (- 1)/"a" "cosec"^3 theta`
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
(x2 – 3x + 2) (x + 1)
Differentiate the following with respect to x.
`e^x/(1 + x)`
Differentiate the following with respect to x.
`e^x/(1 + e^x)`
Differentiate the following with respect to x.
x sin x
Differentiate the following with respect to x.
`sqrt(1 + x^2)`
Differentiate the following with respect to x.
(ax2 + bx + c)n
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
Find `"dy"/"dx"` of the following function:
x = log t, y = sin t
Find `"dy"/"dx"` of the following function:
x = a(θ – sin θ), y = a(1 – cos θ)
Differentiate sin2x with respect to x2.