Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` of the following function:
x = a cos3θ, y = a sin3θ
उत्तर
x = a cos3θ, y = a sin3θ
we have x = a cos3θ; y = a sin3θ
Now, ∴ `"dx"/("d"theta) = - 3"a" cos^2theta sin theta and "dy"/("d"theta) = 3"a" sin^2theta cos theta`
Therefore `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`
`= (3"a"sin^2theta cos theta)/(-3"a" cos^2theta sin theta)`
`= - (sin theta)/(cos theta)`
= - tan θ
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
`5/x^4 - 2/x^3 + 5/x`
Differentiate the following with respect to x.
x4 – 3 sin x + cos x
Differentiate the following with respect to x.
`(sqrtx + 1/sqrtx)^2`
Differentiate the following with respect to x.
ex sin x
Differentiate the following with respect to x.
cos3 x
If `xsqrt(1 + y) + ysqrt(1 + x)` = 0 and x ≠ y, then prove that `"dy"/"dx" = - 1/(x + 1)^2`
Find `"dy"/"dx"` of the following function:
x = ct, y = `c/t`
Differentiate sin2x with respect to x2.
If xy . yx , then prove that `"dy"/"dx" = y/x((x log y - y)/(y log x - x))`
If y = tan x, then prove that y2 - 2yy1 = 0.