Advertisements
Advertisements
प्रश्न
Find y2 for the following function:
y = e3x+2
उत्तर
y = e3x+2
`y_1 = "dy"/"dx" = e^(3x + 2) "d"/"dx" (3x + 2)`
`= e^(3x + 2) (3(1) + 0)`
= `3e^(3x + 2)`
`y_2 = ("d"^2"y")/"dx"^2`
`= 3 ["d"/"dx" (e^(3x + 2))]`
= 3`[3e^(3x + 2)]`
= 9`e^(3x + 2)`
= 9y
APPEARS IN
संबंधित प्रश्न
Differentiate the following with respect to x.
x3 ex
Differentiate the following with respect to x.
`(sqrtx + 1/sqrtx)^2`
Differentiate the following with respect to x.
`(x^2 + x + 1)/(x^2 - x + 1)`
Differentiate the following with respect to x.
sin x cos x
Differentiate the following with respect to x.
`1/sqrt(1 + x^2)`
Find `"dy"/"dx"` for the following function.
x2 – xy + y2 = 1
Find `"dy"/"dx"` for the following function.
x3 + y3 + 3axy = 1
Differentiate the following with respect to x.
xsin x
Find `"dy"/"dx"` of the following function:
x = a(θ – sin θ), y = a(1 – cos θ)
Find y2 for the following function:
x = a cosθ, y = a sinθ