Advertisements
Advertisements
प्रश्न
find the equation of the hyperbola satisfying the given condition:
foci (± \[3\sqrt{5}\] 0), the latus-rectum = 8
उत्तर
The foci of the hyperbola are \[\left( \pm 3\sqrt{5}, 0 \right)\] and the latus rectum is 8.
Thus, the value of \[ae = 3\sqrt{5}\]
and \[\frac{2 b^2}{a} = 8\]
\[ \Rightarrow b^2 = 4a\]
Now, using the relation \[b^2 = a^2 ( e^2 - 1)\],we get:
\[\Rightarrow 4a = 45 - a^2 \]
\[ \Rightarrow a^2 + 4a - 45 = 0\]
\[ \Rightarrow \left( a - 5 \right)\left( a + 9 \right) = 0\]
\[ \Rightarrow a = - 9, 5\]
\[b^2 = - 36 \text { or }20\]
Since negative value is not possible, it is equal to 20.
Thus, the equation of the hyperbola is \[\frac{x^2}{25} - \frac{y^2}{20} = 1\].
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci (±4, 0), the latus rectum is of length 12.
Find the equation of the hyperbola satisfying the given conditions:
Vertices (±7, 0), e = `4/3`
Find the axes, eccentricity, latus-rectum and the coordinates of the foci of the hyperbola 25x2 − 36y2 = 225.
Find the equation of the hyperbola satisfying the given condition :
foci (± \[3\sqrt{5}\] 0), the latus-rectum = 8
find the equation of the hyperbola satisfying the given condition:
foci (0, ± 12), latus-rectum = 36
Write the eccentricity of the hyperbola whose latus-rectum is half of its transverse axis.
Write the length of the latus-rectum of the hyperbola 16x2 − 9y2 = 144.
If the latus-rectum through one focus of a hyperbola subtends a right angle at the farther vertex, then write the eccentricity of the hyperbola.
The latus-rectum of the hyperbola 16x2 − 9y2 = 144 is