मराठी

Find the equation of the hyperbola satisfying the given conditions: Foci (±4, 0), the latus rectum is of length 12. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola satisfying the given conditions:

Foci (±4, 0), the latus rectum is of length 12.

बेरीज

उत्तर

Foci (±4, 0), the latus rectum is of length 12.

Here, the foci are on the x-axis.

Therefore, the equation of the hyperbola is of the form `x^2/a^2 - y^2/b^2 = 1`.

Since the foci are `(± 4, 0)`, C = 4

Length of latus retum = 12

`(2b^2)/a = 12`

= b2 = 6a

We know that a2 + b2 = c2

∴ a2 + 6a = 16

= a2 + 6a - 16 = 0

= a2 + 8a - 2a - 16 = 0

= (a + 8) (a - 2) = 0

= a = -8, 2

but a ≠ –8,

∴ a = 2, a2 = 4

∴ b2 = 6a = 6 × 2 = 12

Thus, the equation of the hyperbola is `x^2/4 - y^2/12 = 1`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise 11.4 [पृष्ठ २६२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise 11.4 | Q 13 | पृष्ठ २६२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×