Advertisements
Advertisements
प्रश्न
Find the mode of the following data:
15, 8, 26, 25, 24, 15, 18, 20, 24, 15, 19, 15
उत्तर
The frequency table for the given data
Value x | 8 | 15 | 18 | 19 | 20 | 24 | 25 | 26 |
Frequency f | 1 | 4 | 1 | 1 | 1 | 2 | 1 | 1 |
We observe that the value 15 has the maximum frequency.
Hence, the mode of data is 15.
APPEARS IN
संबंधित प्रश्न
The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.
Number of students per teacher |
Number of states/U.T. |
15 − 20 | 3 |
20 − 25 | 8 |
25 − 30 | 9 |
30 − 35 | 10 |
35 − 40 | 3 |
40 − 45 | 0 |
45 − 50 | 0 |
50 − 55 | 2 |
The shirt sizes worn by a group of 200 persons, who bought the shirt from a store, are as follows:
Shirt size: | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
Number of persons: | 15 | 25 | 39 | 41 | 36 | 17 | 15 | 12 |
Find the model shirt size worn by the group.
Heights of students of class X are givee in the flowing frequency distribution
Height (in cm) | 150 – 155 | 155 – 160 | 160 – 165 | 165 – 170 | 170 - 175 |
Number of students | 15 | 8 | 20 | 12 | 5 |
Find the modal height.
Also, find the mean height. Compared and interpret the two measures of central tendency.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Mode is
The relationship between mean, median and mode for a moderately skewed distribution is.
State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
For the following distribution
Marks | No. of students |
Less than 20 | 4 |
Less than 40 | 12 |
Less than 60 | 25 |
Less than 80 | 56 |
Less than 100 | 74 |
Less than 120 | 80 |
the modal class is?
Construction of a cumulative frequency table is useful in determining the ______.
The frequency distribution of daily working expenditure of families in a locality is as follows:
Expenditure in ₹ (x): |
0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of families (f): |
24 | 33 | 37 | b | 25 |
If the mode of the distribution is ₹ 140 then the value of b is ______.