Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
उत्तर
Let y = `cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Put x = `cos 2theta`
`("d"x)/("d"theta) = - sin 2theta xx 2`
`("d"x)/("d"theta) = - 2 sin 2theta` .......(1)
y = `cos[2tan^- sqrt((1 - cos 2theta)/(1 + cos theta))]`
y = `cos[2tan^-1 sqrt((2sin^2theta)/(2cos^2theta))]`
y = `cos[2tan^-1 sqrt(tan^2theta)]`
y = `cos[2tan^-1 (tan theta)]`
y = `cos[2theta]`
`("d"y)/("d"theta) = - sin 2theta xx 2`
`("d"y)/("d"theta) = - 2 sin 2theta` .......(2)
From equation (1) and (2) we get
`(("d"y)/("d"theta))/(("d"x)/("d"theta)) = (- 2sin 2theta)/(- 2 sin 2theta)`
`("d"y)/("d"x)` = 1
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
y = tan 3x
Differentiate the following:
y = cos (tan x)
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
f(t) = `root(3)(1 + tan "t")`
Differentiate the following:
y = 4 sec 5x
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = `(sin^2x)/cos x`
Differentiate the following:
y = `5^((-1)/x)`
Differentiate the following:
y = (1 + cos2)6
Find the derivatives of the following:
sin-1 (3x – 4x3)
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then