Advertisements
Advertisements
Question
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Solution
Let y = `cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Put x = `cos 2theta`
`("d"x)/("d"theta) = - sin 2theta xx 2`
`("d"x)/("d"theta) = - 2 sin 2theta` .......(1)
y = `cos[2tan^- sqrt((1 - cos 2theta)/(1 + cos theta))]`
y = `cos[2tan^-1 sqrt((2sin^2theta)/(2cos^2theta))]`
y = `cos[2tan^-1 sqrt(tan^2theta)]`
y = `cos[2tan^-1 (tan theta)]`
y = `cos[2theta]`
`("d"y)/("d"theta) = - sin 2theta xx 2`
`("d"y)/("d"theta) = - 2 sin 2theta` .......(2)
From equation (1) and (2) we get
`(("d"y)/("d"theta))/(("d"x)/("d"theta)) = (- 2sin 2theta)/(- 2 sin 2theta)`
`("d"y)/("d"x)` = 1
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = 4 sec t + tan t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Differentiate the following:
y = sin (ex)
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = `"e"^(3x)/(1 + "e"^x`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
xy = yx
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
`"d"/("d"x) (2/pi sin x^circ)` is
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)` then `("d"y)/("d"x)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then