Advertisements
Advertisements
Question
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Solution
Given sin y = x sin(a + y) ........(1)
Differentiating with respect to x, we get
`cos ("d"y)/("d"x) = x cos("a" + y) (0 + ("d"y)/("d"x)) + sin("a" + y) * 1`
`cos y ("d"y)/("d"x) = xcos("a" + y) ("d"y)/("d"x) + sin("a" + y)`
`cos y ("d"y)/("d"x) - xcos("a" + y) ("d"y)/("d"x) = sin("a" + y)`
`("d"y)/("d"x) = (sin("a" + y))/(cosy- xcos("a" + y))` ........(2)
From equation (1) we have, x = `sin y/(sin("a" + y))`
Substituting for x in equation (2) we get
`("d"y)/("d"x) = (sin("a" + y))/(cosy - siny/(sin("a" + y)) * cos("a" + y))`
`("d"y)/("d"x) = (sin("a" + y))/((sin("a" + y) cosy - cos("a" + y) sin y)/(sin("a" + y))`
= `(sin^2("a" + y))/(sin ["a" + y - y])`
sin(A – B) = sinA cosB – cosA sin B
`("d"y)/("d"x) = (sin^2("a" + y))/sin "a"`
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x – 3 sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = log10 x
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = cos (a3 + x3)
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = `sqrt(x +sqrt(x)`
Differentiate the following:
y = `"e"^(xcosx)`
Differentiate the following:
y = `sqrt(x + sqrt(x + sqrt(x)`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
sin-1 (3x – 4x3)
Choose the correct alternative:
`"d"/("d"x) (2/pi sin x^circ)` is
Choose the correct alternative:
`"d"/("d"x) ("e"^(x + 5log x))` is
Choose the correct alternative:
If f(x) = `{{:("a"x^2 - "b"",", - 1 < x < 1),(1/|x|",", "elsewhere"):}` is differentiable at x = 1, then