Advertisements
Advertisements
Question
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
Solution
x = a(θ + sin θ), y = a(1 – cos θ)
`("'d"x)/("d"theta) = "a"(1 + cos theta), ("d"y)/("d"theta) = "a"(0 - (- sin theta))`
`("d"x)/("d"theta) = "a"(1 + cos theta), ("d"y)/("d"theta) = "a" sin theta`
`(("d"y)/("d"theta))/(("d"x)/("d"theta)) = ("a" sin theta)/("a"(1 + cos theta))`
`("d"y)/("d"x) = sin theta/(1 + cos theta)`
y' = `(2 sin theta/2 cos theta/2)/(2 cos^2 theta/2)`
y' = `(sin theta/2)/(cos theta/2)`
= `tan theta/2`
Differentiating with respect to x we get
`"d"/("d"x) (("d"y)/("d"x)) = sec^2 theta/2 xx 1/2 xx ("d"theta)/("d"x)`
`("d"^2y)/("d"x^2) = 1/2 sec^2 theta/2 xx 1/("a"( + cos theta))`
y" = `1/(2"a") sec^2 theta/2 xx 1/(2 cos^2 theta/2)`
= `1/(4"a") sec^2 theta/2 xx sec^2 theta/2`
= `1/(4"a") (1 + tan^2 theta/2)(1 + tan^2 theta/2)`
y" at θ = `pi/2` is
y" = `1/(4"a") (1 + tan^2((pi/2)/2)) (1 + tan^2 ((pi/2)/2))`
y" = `1/(4"a") (1 + tan^2 (pi/4)) (1 + tan^2 (pi/4))`
y" = `1/(4"a") (1 + 1^2) (1 + 1^2)`
y" = `1/(4"a") 2 xx 2`
y" = `1/"a"`
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = tan θ (sin θ + cos θ)
Find the derivatives of the following functions with respect to corresponding independent variables:
y = x sin x cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Differentiate the following:
y = (x2 + 4x + 6)5
Differentiate the following:
y = cos (tan x)
Differentiate the following:
f(x) = `x/sqrt(7 - 3x)`
Differentiate the following:
y = `"e"^(3x)/(1 + "e"^x`
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
`sqrt(x) = "e"^((x - y))`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
Find the derivative of sin x2 with respect to x2
Choose the correct alternative:
If y = `1/("a" - z)`, then `("d"z)/("d"y)` is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
The number of points in R in which the function f(x) = |x – 1| + |x – 3| + sin x is not differentiable, is