Advertisements
Advertisements
प्रश्न
Find the derivatives of the following:
If x = a(θ + sin θ), y = a(1 – cos θ) then prove that at θ = `pi/2`, yn = `1/"a"`
उत्तर
x = a(θ + sin θ), y = a(1 – cos θ)
`("'d"x)/("d"theta) = "a"(1 + cos theta), ("d"y)/("d"theta) = "a"(0 - (- sin theta))`
`("d"x)/("d"theta) = "a"(1 + cos theta), ("d"y)/("d"theta) = "a" sin theta`
`(("d"y)/("d"theta))/(("d"x)/("d"theta)) = ("a" sin theta)/("a"(1 + cos theta))`
`("d"y)/("d"x) = sin theta/(1 + cos theta)`
y' = `(2 sin theta/2 cos theta/2)/(2 cos^2 theta/2)`
y' = `(sin theta/2)/(cos theta/2)`
= `tan theta/2`
Differentiating with respect to x we get
`"d"/("d"x) (("d"y)/("d"x)) = sec^2 theta/2 xx 1/2 xx ("d"theta)/("d"x)`
`("d"^2y)/("d"x^2) = 1/2 sec^2 theta/2 xx 1/("a"( + cos theta))`
y" = `1/(2"a") sec^2 theta/2 xx 1/(2 cos^2 theta/2)`
= `1/(4"a") sec^2 theta/2 xx sec^2 theta/2`
= `1/(4"a") (1 + tan^2 theta/2)(1 + tan^2 theta/2)`
y" at θ = `pi/2` is
y" = `1/(4"a") (1 + tan^2((pi/2)/2)) (1 + tan^2 ((pi/2)/2))`
y" = `1/(4"a") (1 + tan^2 (pi/4)) (1 + tan^2 (pi/4))`
y" = `1/(4"a") (1 + 1^2) (1 + 1^2)`
y" = `1/(4"a") 2 xx 2`
y" = `1/"a"`
APPEARS IN
संबंधित प्रश्न
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x0
Find the derivatives of the following functions with respect to corresponding independent variables:
Draw the function f'(x) if f(x) = 2x2 – 5x + 3
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = e–mx
Differentiate the following:
y = `(x^2 + 1) root(3)(x^2 + 2)`
Differentiate the following:
y = sin3x + cos3x
Differentiate the following:
y = (1 + cos2)6
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
(cos x)log x
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
tan (x + y) + tan (x – y) = x
Find the derivatives of the following:
`tan^-1sqrt((1 - cos x)/(1 + cos x)`
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If y = `(sin^-1 x)/sqrt(1 - x^2)`, show that (1 – x2)y2 – 3xy1 – y = 0
Choose the correct alternative:
If y = cos (sin x2), then `("d"y)/("d"x)` at x = `sqrt(pi/2)` is