Advertisements
Advertisements
Question
Differentiate the following:
F(x) = (x3 + 4x)7
Solution
F(x) = (x3 + 4x)7
[y = f(g(x)
`("d"y)/("d"x)` = f'(g(x)) . g'(x)]
F'(x) = `7(x^3 + 4x)^(7 - 1) "d"/("d"x) (x^3 + 4x)`
= 7(x3 + 4x)6 (3x2 + 4)
= 7(3x2 + 4)(x3 + 4x)6
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `x/(sin x + cosx)`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `(tanx - 1)/secx`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cosec x . cot x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = (x2 + 5) log(1 + x) e–3x
Differentiate the following:
y = sin (ex)
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Differentiate the following:
y = (1 + cos2)6
Differentiate the following:
y = `sin^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
`cos^-1 ((1 - x^2)/(1 + x^2))`
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If the derivative of (ax – 5)e3x at x = 0 is – 13, then the value of a is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If f(x) = `{{:(x - 5, "if" x ≤ 1),(4x^2 - 9, "if" 1 < x < 2),(3x + 4, "if" x ≥ 2):}` , then the right hand derivative of f(x) at x = 2 is