Advertisements
Advertisements
Question
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Solution
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
⇒ `tan sqrt(x^2+ y^2)= y/x`
Differentiating with respect to x
`sec^2 sqrt(x^2 + y^2) xx 1/2 (x^2 + y^2)^(1/2 - 1) (2x + 2y ("d"y)/("d"x)) = (x ("d"y)/(""x) - y xx 1)/x^2`
`sec^2 sqrt(x^2 + y^2) xx 1/2 (x^2 + y^2)^(- 1/2) (x + y ("d"y)/("d"x)) = (x ("d"y)/("d"x) - y)/x^2`
`(sec^2 sqrt(x^2 + y^2))/(sqrt(x^2 + y^2)) (x + y (""y)/("d"x)) = (x ("d"y)/("d"x) - y)/x^2`
`(x^2 * sec^2 sqrt(x^2 + y^2))/(sqrt(x^2 + y^2)) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`x^2/(sqrt(x^2 + y^2)) (1 + tan^2 sqrt(x^2 + y^2)) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`x^2/(sqrt(x^2 + y^2)) (1 + (y^2)/(x^2)) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`x^2/(sqrt(x^2 + y^2)) ((x^2 + y^2)/x^2) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`(x^2 + y^2)/(sqrt(x^2 + y^2)) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`sqrt(x^2 + y^2) (x + y ("d"y)/("d"x)) = x ("d"y)/("d"x) - y`
`x sqrt(x^2 + y^2) + y sqrt(x^2 + y^2) ("d"y)/("d"x) = x ("d"y)/("d"x) - y`
`y sqrt(x^2 + y^2) ("d"y)/("d"x) - x ("d"y)/("d"x) = - y - x sqrt(x^2 + y^2)`
`(y sqrt(x^2 + y^2) - x)("d"y)/("d"x) = -(x sqrt(x^2 + y^2) + y)`
`("d"y)/("d"x) = - ((x sqrt(x^2 + y^2) + y))/(y sqrt(x^2 + y^2) - x)`
`("d"y)/("d"x) = (x sqrt(x^2 + y^2) + y)/(x - y sqrt(x^2 + y^2))`
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
f(x) = x sin x
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Find the derivatives of the following functions with respect to corresponding independent variables:
y = ex sin x
Differentiate the following:
F(x) = (x3 + 4x)7
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Differentiate the following:
s(t) = `root(4)(("t"^3 + 1)/("t"^3 - 1)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
x = `(1 - "t"^2)/(1 + "t"^2)`, y = `(2"t")/(1 + "t"^2)`
Find the derivatives of the following:
If u = `tan^-1 (sqrt(1 + x^2) - 1)/x` and v = `tan^-1 x`, find `("d"u)/("d"v)`
Find the derivatives of the following:
If y = etan–1x, show that (1 + x2)y” + (2x – 1)y’ = 0
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Choose the correct alternative:
If y = `1/4 u^4`, u = `2/3 x^3 + 5`, then `("d"y)/("d"x)` is
Choose the correct alternative:
If x = a sin θ and y = b cos θ, then `("d"^2y)/("d"x^2)` is
Choose the correct alternative:
The differential coefficient of `log_10 x` with respect to `log_x 10` is
Choose the correct alternative:
If y = `(1 - x)^2/x^2`, then `("d"y)/("d"x)` is