Advertisements
Advertisements
Question
Find the derivatives of the following functions with respect to corresponding independent variables:
g(t) = t3 cos t
Solution
g(t) = t3 cos t
(i.e.) u = t3 and v = cos t
Let u’ = `("d"u)/("d"x)` and v’ = `("d"v)/("d"x)` = (– sin t)
g'(t) = uv’ + vu’
g'(t) = t3 (– sin t) + cos t (3t2)
= – t3 sin t + 3t2 cos t
APPEARS IN
RELATED QUESTIONS
Find the derivatives of the following functions with respect to corresponding independent variables:
y = sin x + cos x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = cos x – 2 tan x
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `tan x/x`
Find the derivatives of the following functions with respect to corresponding independent variables:
y = `sinx/(1 + cosx)`
Differentiate the following:
y = tan 3x
Differentiate the following:
y = `"e"^sqrt(x)`
Differentiate the following:
h(t) = `("t" - 1/"t")^(3/2)`
Differentiate the following:
y = (2x – 5)4 (8x2 – 5)–3
Find the derivatives of the following:
xy = yx
Find the derivatives of the following:
`x^2/"a"^2 + y^2/"b"^2` = 1
Find the derivatives of the following:
`sqrt(x^2 + y^2) = tan^-1 (y/x)`
Find the derivatives of the following:
If cos(xy) = x, show that `(-(1 + ysin(xy)))/(xsiny)`
Find the derivatives of the following:
`tan^-1 = ((6x)/(1 - 9x^2))`
Find the derivatives of the following:
`cos[2tan^-1 sqrt((1 - x)/(1 + x))]`
Find the derivatives of the following:
x = `"a" cos^3"t"` ; y = `"a" sin^3"t"`
Find the derivatives of the following:
x = a (cos t + t sin t); y = a (sin t – t cos t)
Find the derivatives of the following:
If sin y = x sin(a + y), the prove that `("d"y)/("d"x) = (sin^2("a" + y))/sin"a"`, a ≠ nπ
Find the derivatives of the following:
If y = `(cos^-1 x)^2`, prove that `(1 - x^2) ("d"^2y)/("d"x)^2 - x ("d"y)/("d"x) - 2` = 0. Hence find y2 when x = 0
Choose the correct alternative:
If the derivative of (ax – 5)e3x at x = 0 is – 13, then the value of a is