Advertisements
Advertisements
प्रश्न
Find the distance between parallel lines 9x + 6y − 7 = 0 and 3x + 2y + 6 = 0
उत्तर
First we write the equations of the two lines in such a way that the coefficients of x and y are same in the two equations.
For this purpose, we multiply the second equation by 3.
Then the equations of the two lines are:
9x + 6y − 7 = 0 and 9x + 6y + 18 = 0
∴ the distance between parallel lines
= `|("c"_1 - "c"_2)/sqrt("a"^2 + "b"^2)|`,
where c1 = −7, c2 = 18, a = 9, b = 6
= `|(-7 - 18)/sqrt(9^2 + 6^2)|`
= `|(-25)/sqrt(81 + 36)|`
= `|25/sqrt(117)|`
= `25/(3sqrt(13))"units"`.
APPEARS IN
संबंधित प्रश्न
Find the slope, X-intercept, Y-intercept of the following line:
3x − y − 9 = 0
Find the slope, X-intercept, Y-intercept of the following line:
x + 2y = 0
Write the following equation in ax + by + c = 0 form.
y = 4
Write the following equation in ax + by + c = 0 form.
`x/2 + y/4` = 1
Write the following equation in ax + by + c = 0 form.
`x/3 - y/2` = 0
Show that lines x – 2y – 7 = 0 and 2x − 4y + 15 = 0 are parallel to each other
Show that lines x − 2y − 7 = 0 and 2x + y + 1 = 0 are perpendicular to each other. Find their point of intersection
Find the co-ordinates of the circumcenter of the triangle whose vertices are A(–2, 3), B(6, –1), C(4, 3).
Find the co-ordinates of the orthocenter of the triangle whose vertices are A(3, –2), B(7, 6), C(–1, 2).
Show that lines 3x − 4y + 5 = 0, 7x − 8y + 5 = 0, and 4x + 5y − 45 = 0 are concurrent. Find their point of concurrence
Find the equation of the line whose X-intercept is 3 and which is perpendicular to the line 3x − y + 23 = 0.
Find the distance of the point A(−2, 3) from the line 12x − 5y − 13 = 0
Find the equation of the line parallel to the X-axis and passing through the point of intersection of lines x + y − 2 = 0 and 4x + 3y = 10
Find the equation of the line passing through the point of intersection of lines x + y − 2 = 0 and 2x − 3y + 4 = 0 and making intercept 3 on the X-axis
If A(4, 3), B(0, 0), and C(2, 3) are the vertices of ∆ABC then find the equation of bisector of angle BAC.
Select the correct option from the given alternatives:
The equation of a line, having inclination 120° with positive direction of X−axis, which is at a distance of 3 units from the origin is
Select the correct option from the given alternatives:
Distance between the two parallel lines y = 2x + 7 and y = 2x + 5 is
Answer the following question:
Find the distance of the origin from the line x = – 2
Answer the following question:
Obtain the equation of the line which is parallel to the Y−axis and 2 units to the left of it.
Answer the following question:
Obtain the equation of the line which is parallel to the X−axis and making an intercept of 5 on the Y−axis.
Answer the following question:
Find the distance of the origin from the line 12x + 5y + 78 = 0
Answer the following question:
Find the equation of the line which passes through the point of intersection of lines x + y − 3 = 0, 2x − y + 1 = 0 and which is parallel X-axis
Answer the following question:
Find the distance of P(−1, 1) from the line 12(x + 6) = 5(y − 2)
Answer the following question:
Find the distance of the line 4x − y = 0 from the point P(4, 1) measured along the line making an angle of 135° with the positive X-axis
A particle is moving in a straight line according to as S = 24t + 3t2 - t3, then the time it will come to rest is ______
The length of perpendicular from (1, 3) on line 3x + 4y + 10 = 0, is ______
The y-intercept of the line passing through A( 6, 1) and perpendicular to the line x - 2y = 4 is ______.
The equation 12x2 + 7xy + ay2 + 13x - y + 3 = 0 represents a pair of perpendicular lines. Then the value of 'a' is ______
Find the distance of the origin from the line 7x + 24y – 50 = 0 is: