Advertisements
Advertisements
प्रश्न
Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.
उत्तर
Given, marginal revenue `("R"_"m") = 50` and price (P) = ₹ 75
using, Rm = p`(1 - 1/η)`
∴ 50 = 75 `(1 - 1/η)`
∴ `50/75 = 1 - 1/η`
∴ `2/3 = 1 - 1/η`
∴ `1/η = 1/3`
∴ η = 3
∴ elasticity of demand = 3
APPEARS IN
संबंधित प्रश्न
Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5.
A manufacturing company produces x items at the total cost of Rs (180 + 4x). The demand function of this product is P = (240 − x). Find x for which profit is increasing.
The total cost function for production of x articles is given as C = 100 + 600x – 3x2 . Find the values of x for which total cost is decreasing.
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing
Find the price, if the marginal revenue is 28 and elasticity of demand is 3.
If the demand function is D = `((p + 6)/(p − 3))`, find the elasticity of demand at p = 4.
Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.
For the demand function D = 100 – `p^2/2`. Find the elasticity of demand at p = 10 and comment on the results.
For the demand function D = 100 – `"p"^2/2`. Find the elasticity of demand at p = 6 and comment on the results.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.
If the elasticity of demand η = 1, then demand is ______.
If 0 < η < 1, then the demand is ______.
If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which profit is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 − x
Profit π = R – C
∴ π = `square`
Differentiating w.r.t. x,
`("d"pi)/("d"x)` = `square`
Since Profit is increasing,
`("d"pi)/("d"x)` > 0
∴ Profit is increasing for `square`
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which elasticity of demand for price ₹ 80.
Solution: Total cost C = 40 + 2x and Price p = 120 – x
p = 120 – x
∴ x = 120 – p
Differentiating w.r.t. p,
`("d"x)/("dp")` = `square`
∴ Elasticity of demand is given by η = `- "P"/x*("d"x)/("dp")`
∴ η = `square`
When p = 80, then elasticity of demand η = `square`
Complete the following activity to find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as:
Ec = (0.0003)I2 + (0.075)I2
when I = 1000
If f(x) = x3 – 3x2 + 3x – 100, x ∈ R then f"(x) is ______.