Advertisements
Advertisements
प्रश्न
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.
उत्तर
Given, the price is p = 120 - x
∴ x = 120 - p
where, x = demand
∴ `"dx"/"dp" = 0 - 1 = - 1`
`eta = (-"p")/"x" * "dx"/"dp"`
∴ `eta = (-"p")/(120 - "p") * (- 1)`
∴ `eta = "p"/(120 - "p")`
p = 80 ....(Given)
∴ `eta = 80/(120 - 80) = 80/40 = 2`
∴ The elasticity of demand for p = 80 is η = 2.
APPEARS IN
संबंधित प्रश्न
Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5.
A manufacturing company produces x items at the total cost of Rs (180 + 4x). The demand function of this product is P = (240 − x). Find x for which profit is increasing.
Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.
The demand function of a commodity at price P is given as, D = `40 - "5P"/8`. Check whether it is increasing or decreasing function.
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing
Find the price, if the marginal revenue is 28 and elasticity of demand is 3.
If the demand function is D = `((p + 6)/(p − 3))`, find the elasticity of demand at p = 4.
Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which profit is increasing.
Find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as Ec = (0.0003) I2 + (0.075) I ; When I = 1000.
If the marginal revenue is 28 and elasticity of demand is 3, then the price is ______.
If the elasticity of demand η = 1, then demand is ______.
If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which revenue is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 – x
Revenue R = `square`
Differentiating w.r.t. x,
∴ `("dR")/("d"x) = square`
Since Revenue is increasing,
∴ `("dR")/("d"x)` > 0
∴ Revenue is increasing for `square`
If elasticity of demand η = 0 then demand is ______.
If f(x) = x3 – 3x2 + 3x – 100, x ∈ R then f"(x) is ______.
If 0 < η < 1 then the demand is ______.