Advertisements
Advertisements
प्रश्न
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.
उत्तर
Given, the price is p = 120 - x
∴ x = 120 - p
where, x = demand
∴ `"dx"/"dp" = 0 - 1 = - 1`
`eta = (-"p")/"x" * "dx"/"dp"`
∴ `eta = (-"p")/(120 - "p") * (- 1)`
∴ `eta = "p"/(120 - "p")`
p = 80 ....(Given)
∴ `eta = 80/(120 - 80) = 80/40 = 2`
∴ The elasticity of demand for p = 80 is η = 2.
APPEARS IN
संबंधित प्रश्न
Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5.
A manufacturing company produces x items at the total cost of Rs (180 + 4x). The demand function of this product is P = (240 − x). Find x for which profit is increasing.
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing
Find the price, if the marginal revenue is 28 and elasticity of demand is 3.
Find the price for the demand function D = `((2"p" + 3)/(3"p" - 1))`, when elasticity of demand is `11/14`.
If the marginal revenue is 28 and elasticity of demand is 3, then the price is ______.
If the elasticity of demand η = 1, then demand is ______.
If 0 < η < 1, then the demand is ______.
If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.
State whether the following statement is True or False:
If the marginal revenue is 50 and the price is ₹ 75, then elasticity of demand is 4
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which revenue is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 – x
Revenue R = `square`
Differentiating w.r.t. x,
∴ `("dR")/("d"x) = square`
Since Revenue is increasing,
∴ `("dR")/("d"x)` > 0
∴ Revenue is increasing for `square`
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which profit is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 − x
Profit π = R – C
∴ π = `square`
Differentiating w.r.t. x,
`("d"pi)/("d"x)` = `square`
Since Profit is increasing,
`("d"pi)/("d"x)` > 0
∴ Profit is increasing for `square`
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which elasticity of demand for price ₹ 80.
Solution: Total cost C = 40 + 2x and Price p = 120 – x
p = 120 – x
∴ x = 120 – p
Differentiating w.r.t. p,
`("d"x)/("dp")` = `square`
∴ Elasticity of demand is given by η = `- "P"/x*("d"x)/("dp")`
∴ η = `square`
When p = 80, then elasticity of demand η = `square`
If f(x) = x3 – 3x2 + 3x – 100, x ∈ R then f"(x) is ______.
If 0 < η < 1 then the demand is ______.
In a factory, for production of Q articles, standing charges are ₹500, labour charges are ₹700 and processing charges are 50Q. The price of an article is 1700 - 3Q. Complete the following activity to find the values of Q for which the profit is increasing.
Solution: Let C be the cost of production of Q articles.
Then C = standing charges + labour charges + processing charges
∴ C = `square`
Revenue R = P·Q = (1700 - 3Q)Q = 1700Q- 3Q2
Profit `pi = R - C = square`
Differentiating w.r.t. Q, we get
`(dpi)/(dQ) = square`
If profit is increasing , then `(dpi)/(dQ) >0`
∴ `Q < square`
Hence, profit is increasing for `Q < square`