Advertisements
Advertisements
प्रश्न
If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is ______.
उत्तर
If the average revenue is 45 and elasticity of demand is 5, then marginal revenue is 36.
APPEARS IN
संबंधित प्रश्न
Find the elasticity of demand, if the marginal revenue is 50 and price is Rs 75.
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 – x). Find x for which revenue is increasing
The total cost of manufacturing x articles C = 47x + 300x2 – x4 . Find x, for which average cost is decreasing
If the demand function is D = 50 – 3p – p2. Find the elasticity of demand at p = 5 comment on the result
For the demand function D = 100 – `"p"^2/2`. Find the elasticity of demand at p = 6 and comment on the results.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which profit is increasing.
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price is given as p = 120 – x. Find the value of x for which also find an elasticity of demand for price 80.
If 0 < η < 1, then the demand is ______.
State whether the following statement is True or False:
If the marginal revenue is 50 and the price is ₹ 75, then elasticity of demand is 4
The manufacturing company produces x items at the total cost of ₹ 180 + 4x. The demand function for this product is P = (240 − 𝑥). Find x for which profit is increasing
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which revenue is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 – x
Revenue R = `square`
Differentiating w.r.t. x,
∴ `("dR")/("d"x) = square`
Since Revenue is increasing,
∴ `("dR")/("d"x)` > 0
∴ Revenue is increasing for `square`
A manufacturing company produces x items at a total cost of ₹ 40 + 2x. Their price per item is given as p = 120 – x. Find the value of x for which profit is increasing
Solution: Total cost C = 40 + 2x and Price p = 120 − x
Profit π = R – C
∴ π = `square`
Differentiating w.r.t. x,
`("d"pi)/("d"x)` = `square`
Since Profit is increasing,
`("d"pi)/("d"x)` > 0
∴ Profit is increasing for `square`
Complete the following activity to find MPC, MPS, APC and APS, if the expenditure Ec of a person with income I is given as:
Ec = (0.0003)I2 + (0.075)I2
when I = 1000
If elasticity of demand η = 0 then demand is ______.
In a factory, for production of Q articles, standing charges are ₹500, labour charges are ₹700 and processing charges are 50Q. The price of an article is 1700 - 3Q. Complete the following activity to find the values of Q for which the profit is increasing.
Solution: Let C be the cost of production of Q articles.
Then C = standing charges + labour charges + processing charges
∴ C = `square`
Revenue R = P·Q = (1700 - 3Q)Q = 1700Q- 3Q2
Profit `pi = R - C = square`
Differentiating w.r.t. Q, we get
`(dpi)/(dQ) = square`
If profit is increasing , then `(dpi)/(dQ) >0`
∴ `Q < square`
Hence, profit is increasing for `Q < square`