मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)

बेरीज

उत्तर

Let the required equation of ellipse be `x^2/"a"^2 + y^2/"b"^2` = 1, where a > b.

The ellipse passes through the points (–3, 1) and (2, –2).

∴ Substituting x = –3 and y = 1 in equation of ellipse, we get

`(-3)^2/"a"^2 + 1^2/"b"^2` = 1

∴ `9/"a"^2 + 1/"b"^2` = 1   ...(i)

Substituting x = 2 and y = –2 in equation of ellipse, we get

`2^2/"a"^2 + (-2)^2/"b"^2` = 1

∴ `4/"a"^2 + 4/"b"^2` = 1   ...(ii)

Let `1/"a"^2` = A and `1/"b"^2` = B

∴ Equations (i) and (ii) become

9A + B = 1 …(iii)

4A + 4B = 1 …(iv)

Multiplying (iii) by 4, we get

36A + 4B = 4 …(v)

Subtracting (iv) from (v), we get

32A = 3

∴ A = `3/32`

Substituting A = `3/32` in (iv), we get

`4(3/32) + 4"B"` = 1

∴ `3/8 + 4"B"` = 1

∴ 4B = `1 - 3/8`

∴ 4B = `5/8`

∴ B = `5/32`

Since `1/"a"^2` = A and `1/"b"^2` = B,

`1/"a"^2 = 3/32` and `1/"b"^2 = 5/32`

∴ a2 = `32/3` and b2 = `32/5`

∴ The required equation of ellipse is

`x^2/((32/3)) + y^2/((32/5))`, i.e., 3x2 + 5y2 = 32.

shaalaa.com
Conic Sections - Ellipse
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Exercise 7.2 | Q 2. (vii) | पृष्ठ १६३
बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (14) (iii) | पृष्ठ १७८

संबंधित प्रश्‍न

Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×