Advertisements
Advertisements
प्रश्न
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
उत्तर
Given equation of the ellipse is `x^2/9 + y^2/4` = 1.
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
a2 = 9 and b2 = 4
Given equation of line is `x + 3ysqrt(2)` = 9,
i.e., y = `(-1)/(3sqrt(2)` x + `3/sqrt(2)`
Comparing this equation with y = mx + c, we get
m = `(-1)/(3sqrt(2)` and c = `3/sqrt(2)`
For the line y = mx + c to be a tangent to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1, we must have
c2 = a2 m2 + b2
c2 = `(3/sqrt(2))^2 = 9/2`
a2 m2 + b2 = `9((-1)/(3sqrt(2)))^2 + 4`
= `1/2 + 4`
= `9/2`
= c2
∴ The given line is a tangent to the given ellipse and point of contact is
`((-"a"^2"m")/"c", "b"^2/"c") = (((-9)((-1)/(3sqrt(2))))/(3/sqrt(2)), 4/(3/sqrt(2)))`
= `(1, (4sqrt(2))/3)`.
APPEARS IN
संबंधित प्रश्न
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6
Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.
Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.
A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact
Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse
P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is
Select the correct option from the given alternatives:
The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are
Answer the following:
Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)
The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.