मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact

बेरीज

उत्तर

Given equation of the ellipse is 9x2 + 16y2 = 144

  ∴ `x^2/16 + y^2/9` = 1

Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 16 and b2 = 9

Given equation of line is x – y = 5, i.e., y = x – 5

Comparing this equation with y = mx + c, we get

m = 1 and c = – 5

For the line y = mx + c to be a tangent to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1, we must have

c2 = a2m2 + b2

c2 = (–5)2 = 25

a2m2 + b2 = 16(1)2 + 9 = 16 + 9 = 25 = c2 

∴ The given line is a tangent to the given ellipse and point of contact

= `((-"a"^2"m")/"c", "b"^2/"c")`

= `(((-16)(1))/-5, 9/-5)`

= `(16/5, (-9)/5)`.

shaalaa.com
Conic Sections - Ellipse
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

संबंधित प्रश्‍न

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×