मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).

बेरीज

उत्तर

Given equation of the ellipse is 2x2 + y2 = 6.

∴ `x^2/3 + y^2/6` = 1

Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 3 and b2 = 6

Equations of tangents to the ellipse

`x^2/"a"^2 + y^2/"b"^2` = 1 having slope m are

y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`

Since (2, 1) lies on both the tangents,

1 = `2"m" ± sqrt(3"m"^2 + 6)`

∴ 1 – 2m = `± sqrt(3"m"^2 + 6)`

Squaring both the sides, we get

1 – 4m + 4m2 = 3m2 + 6

∴ m2 – 4m – 5 = 0

∴ (m – 5)(m + 1) = 0

∴ m = 5 or m = – 1

These are the slopes of the required tangents.

∴ By slope point form y – y1 = m(x – x1), the equations of the tangents are

∴ y – 1 = 5(x – 2) and y – 1 = – 1(x – 2)

∴ y – 1 = 5x – 10 and y – 1 = – x + 2

∴ 5x – y – 9 = 0 and x + y – 3 = 0.

shaalaa.com
Conic Sections - Ellipse
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Exercise 7.2 | Q 11. (iii) | पृष्ठ १६३

संबंधित प्रश्‍न

Answer the following:

Find the

  1. lengths of the principal axes
  2. co-ordinates of the foci
  3. equations of directrices
  4. length of the latus rectum
  5. distance between foci
  6. distance between directrices of the ellipse:

`x^2/25 + y^2/9` = 1


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×