मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the lengths of the principal axes co-ordinates of the foci equations of directrices length of the latus rectum distance between foci distance between directrices of the ellipse: x225+y29 = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the

  1. lengths of the principal axes
  2. co-ordinates of the foci
  3. equations of directrices
  4. length of the latus rectum
  5. distance between foci
  6. distance between directrices of the ellipse:

`x^2/25 + y^2/9` = 1

बेरीज

उत्तर

Given equation of the ellipse is `x^2/25 + y^2/9` = 1.

Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 25 and b2 = 9

∴ a = 5 and b = 3

Since a > b,

X-axis is the major axis and Y-axis is the minor axis.

i. Length of major axis = 2a = 2(5) = 10

Length of minor axis = 2b = 2(3) = 6

∴ Lengths of the principal axes are 10 and 6.

ii. We know that e = `sqrt("a"^2 - "b"^2)/"a"`

∴ e = `sqrt(25- 9)/5`

= `sqrt(16)/5`

= `4/5`

Co-ordinates of the foci are S(ae, 0) and S'(–ae, 0),

i.e., `"S"(5(4/5),0)` and `"S'"(-5(4/5),0)`,

i.e., S(4, 0) and S'(–4, 0)

iii. Equations of the directrices are x = `± "a"/"e"`,

i.e., x = `± 5/(4/5)`, i.e., x = `± 25/4`

iv. Length of latus rectum = `(2"b"^2)/"a" = (2(3)^2)/5 = 18/5`

v. Distance between foci = 2ae = `2(5)(4/5)` = 8

vi. Distance between directrices = `(2"a")/"e"`

= `(2(5))/(4/5)`

= `25/2`

shaalaa.com
Conic Sections - Ellipse
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (13) (i) | पृष्ठ १७८

संबंधित प्रश्‍न

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×