Advertisements
Advertisements
प्रश्न
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
उत्तर
Given equation of the ellipse is 2x2 + 6y2 = 6.
∴ `x^2/3 + y^2/1` = 1
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
a2 = 3 and b2 = 1
∴ a = `sqrt(3) and "b"` = 1
Since a > b,
X-axis is the major axis and Y-axis is the minor axis.
i. Length of major axis = 2a = `2sqrt(3)`
Length of minor axis = 2b = 2(1) = 2
∴ Lengths of the principal axes are `2sqrt(3)` and 2.
ii. We know that e = `sqrt("a"^2 - "b"^2)/"a"`
∴ e = `sqrt(3 - 1)/sqrt(3) = sqrt(2)/sqrt(3)`
Co-ordinates of the foci are S(ae, 0) and S'(–ae, 0),
i.e., `"S"(sqrt(3)(sqrt(2)/sqrt(3)),0)` and `"S""'"(-sqrt(3)(sqrt(2)/sqrt(3)),0)`,
i.e., `"S"(sqrt(2), 0)` and `"S""'"(-sqrt(2), 0)`
iii. Equations of the directrices are x = `±"a"/"e"`,
i.e., x = `±sqrt3/(sqrt2/sqrt3)`, i.e., x = `±3/sqrt(2)`
iv. Length of latus rectum = `(2"b"^2)/"a" = (2(1)^2)/sqrt(3) = 2/sqrt(3)`
v. Distance between foci = 2ae
= `2(sqrt(3)) (sqrt(2)/sqrt(3))`
= `2sqrt(2)`
vi. Distance between directrices = `(2"a")/"e"`
= `(2sqrt(3))/(sqrt(2)/sqrt(3))`
= `(2 xx 3)/sqrt(2)`
= `3sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 12
Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.
P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.
Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.