Advertisements
Advertisements
प्रश्न
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
उत्तर
We know that y = mx + c will touch the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1
if c2 = a2m2 + b2 ...(1)
The equation of the line is
3x + 4y + k = 0
∴ y = `-3/4 "x" -"k"/4`
Comparing this equation with y = mx + c, we get,
m = `-3/4`, c = `-"k"/4`
The equation of the ellipse is 9x2 + 16y2 = 144
∴ `x^2/16 + y^2/9` = 1
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
∴ a2 = 16, b2 = 9
Applying the tangency condition (1), we get,
`(-"k"/4)^2 = 16 xx (-3/4)^2 + 9`
∴ `"k"^2/16` = 9 + 9 = 18
∴ k2 = 16 × 9 × 2
∴ k = `± 12sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 12
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6
Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.
Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.
Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =
Select the correct option from the given alternatives:
The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.