Advertisements
Advertisements
प्रश्न
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
उत्तर
Given equation of the ellipse is 9x2 + 16y2 = 144
∴ `x^2/16 + y^2/9` = 1
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
a2 = 16 and b2 = 9
Given equation of line is x – y = 5, i.e., y = x – 5
Comparing this equation with y = mx + c, we get
m = 1 and c = – 5
For the line y = mx + c to be a tangent to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1, we must have
c2 = a2m2 + b2
c2 = (–5)2 = 25
a2m2 + b2 = 16(1)2 + 9 = 16 + 9 = 25 = c2
∴ The given line is a tangent to the given ellipse and point of contact
= `((-"a"^2"m")/"c", "b"^2/"c")`
= `(((-16)(1))/-5, 9/-5)`
= `(16/5, (-9)/5)`.
APPEARS IN
संबंधित प्रश्न
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 12
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.
Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.
Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.
Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse
The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16
Select the correct option from the given alternatives:
If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =
Select the correct option from the given alternatives:
The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is
Select the correct option from the given alternatives:
The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.
The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.