Advertisements
Advertisements
प्रश्न
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
उत्तर
Let the equation of the ellipse be
`x^2/"a"^2 + y^2/"b"^2` = 1
It is given that,
distance between directrices is three times the distance between the foci.
∴ `(2"a")/"e"` = 3(2ae)
∴ 1 = 3e2
∴ e2 = `1/3`
∴ e = `1/sqrt(3)`. ...[∵ 0 < e < 1]
संबंधित प्रश्न
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8
Answer the following:
Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.
Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.
A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.