English

Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci

Sum

Solution

Let the equation of the ellipse be

`x^2/"a"^2 + y^2/"b"^2` = 1

It is given that,

distance between directrices is three times the distance between the foci.

∴ `(2"a")/"e"` = 3(2ae)

∴ 1 = 3e2

∴ e2 = `1/3`

∴ e = `1/sqrt(3)`.    ...[∵ 0 < e < 1]

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

RELATED QUESTIONS

Answer the following:

Find the

  1. lengths of the principal axes
  2. co-ordinates of the foci
  3. equations of directrices
  4. length of the latus rectum
  5. distance between foci
  6. distance between directrices of the ellipse:

`x^2/25 + y^2/9` = 1


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×