English

P and Q are two points on the ellipse abx2a2+y2b2 = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = ππ2 - Mathematics and Statistics

Advertisements
Advertisements

Question

P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.

Sum

Solution

Given equation of the ellipse is `x^2/"a"^2 + y^2/"b"^2` = 1

θ1 and θ2 are the eccentric angles of tangent.

∴ Equation of tangent at point P is

`x/"a"costheta_1 + y/"b"sintheta_1` = 1  ...(i)

∴ Equation of tangent at point Q is

`x/"a"costheta_2 + y/"b"sintheta_2` = 1

θ1 + θ2 = `π/2`    ...[Given]

∴ θ2 = `pi/2 - theta_1`

`x/"a"cos(pi/2 - theta_1) + y/"b"sin(pi/2 - theta_1)` = 1

∴ `x/"a"sintheta_1  +  y/"b"costheta_1` = 1   ...(ii)

From (i) and (ii), we get

`x/"a"costheta_1 + y/"b"sintheta_1  = x/"a"sintheta_1 + y/"b"costheta_1`

Let M(x1, y1) be the point of intersection of the tangents.

∴ `x_1/"a" costheta_1 + y_1/"b" sintheta_1 = x_1/"a" sintheta_1 + y_1/"b"costheta_1`

∴ `x_1/"a"(costheta_1 - sintheta_1) = y_1/"b"(costheta_1 - sintheta_1)`  ...(iii)

If cos θ1 – sin θ1 = 0,

cos θ= sin θ1

∴ tan θ1 = 1

∴ θ1 = `pi/4`

Since θ1 + θ2 = `pi/2`, θ2 = `pi/2 - pi/4 = pi/4` 

i.e., points P and Q coincide, which is not possible, as P and Q are two different points.

∴ cos θ1 – sin θ1 ≠ 0

Dividing equation (iii) by (cos θ1 – sin θ1), we get

`x_1/"a" = y_1/"b"`

∴ bx1 – ay1 = 0

∴ bx – ay = 0, which is the required equation of locus of point M.

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 164]

RELATED QUESTIONS

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×