हिंदी

P and Q are two points on the ellipse abx2a2+y2b2 = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = ππ2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.

योग

उत्तर

Given equation of the ellipse is `x^2/"a"^2 + y^2/"b"^2` = 1

θ1 and θ2 are the eccentric angles of tangent.

∴ Equation of tangent at point P is

`x/"a"costheta_1 + y/"b"sintheta_1` = 1  ...(i)

∴ Equation of tangent at point Q is

`x/"a"costheta_2 + y/"b"sintheta_2` = 1

θ1 + θ2 = `π/2`    ...[Given]

∴ θ2 = `pi/2 - theta_1`

`x/"a"cos(pi/2 - theta_1) + y/"b"sin(pi/2 - theta_1)` = 1

∴ `x/"a"sintheta_1  +  y/"b"costheta_1` = 1   ...(ii)

From (i) and (ii), we get

`x/"a"costheta_1 + y/"b"sintheta_1  = x/"a"sintheta_1 + y/"b"costheta_1`

Let M(x1, y1) be the point of intersection of the tangents.

∴ `x_1/"a" costheta_1 + y_1/"b" sintheta_1 = x_1/"a" sintheta_1 + y_1/"b"costheta_1`

∴ `x_1/"a"(costheta_1 - sintheta_1) = y_1/"b"(costheta_1 - sintheta_1)`  ...(iii)

If cos θ1 – sin θ1 = 0,

cos θ= sin θ1

∴ tan θ1 = 1

∴ θ1 = `pi/4`

Since θ1 + θ2 = `pi/2`, θ2 = `pi/2 - pi/4 = pi/4` 

i.e., points P and Q coincide, which is not possible, as P and Q are two different points.

∴ cos θ1 – sin θ1 ≠ 0

Dividing equation (iii) by (cos θ1 – sin θ1), we get

`x_1/"a" = y_1/"b"`

∴ bx1 – ay1 = 0

∴ bx – ay = 0, which is the required equation of locus of point M.

shaalaa.com
Conic Sections - Ellipse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.2 [पृष्ठ १६४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.2 | Q 15 | पृष्ठ १६४

संबंधित प्रश्न

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle


Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×