हिंदी

Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is 503. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.

योग

उत्तर

Let the required equation of ellipse be `x^2/"a"^2 + y^2/"b"^2` = 1, where a > b.

Distance between foci = 2ae

Given, distance between foci = 6

∴ 2ae = 6

∴ ae = `6/2` = 3

∴ a = `3/"e"`    ...(i)

Distance between directrices = `(2"a")/"e"`

Given, distance between directrices = `50/3`

∴ `(2"a")/"e" = 50/3`

∴ `"a"/"e" = 25/3`

∴ `(3/"e")/"e" = 25/3`   …[From (i)]

∴ `3/"e"^2 = 25/3`

∴ e2 = `9/25`

∴ e = `3/5`   …[∴ 0 < e < 1]

Substituting e = `3/5` in (i), we get

a = `3/(3/5)`

∴ a = 5

∴ a2 = 25

Now, b2 = a2 (1 – e2)

= `25[1 - (3/5)^2]`

= `25(1 - 9/25)`

= `25(16/25)`

= 16

∴ The required equation of ellipse is `x^2/25 + y^2/16` = 1.

shaalaa.com
Conic Sections - Ellipse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.2 | Q 2. (v) | पृष्ठ १६३

संबंधित प्रश्न

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×