Advertisements
Advertisements
प्रश्न
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
उत्तर
The equation of the ellipse is 3x2 + 5y2 = 15
∴ `x^2/5 + y^2/3` = 1.
Comparing with `x^2/"a"^2 + y^2/"b"^2` = 1, we get,
a2 = 5, b2 = 3
Let P = (x1, y1) be any point on the required locus.
The equations of the tangents with slope m are
y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`
i.e., y = `"m"x ± sqrt(5"m"^2 + 3)`
If these tangents pass through P(x1, y1), we have
y1 = `"m"x_1 ± sqrt(5"m"^2 + 3)`
∴ y1 – mx1 = `± sqrt(5"m"^2 + 3)`
Squaring both the sides, we get
(y1 – mx1)2 = 5m2 + 3
∴ `"y"_1^2 - 2"x"_1"y"_1"m" + "m"^2"x"_1^2 - 5"m"^2 - 3 = 0`
∴ `("x"_1^2 - 5)"m"^2 - 2"x"_1"y"_1"m" + ("y"_1^2 - 3) = 0`
This is a quadratic in m
Its roots m1 and m2 are the slopes of the tangents drawn from P.
From the quadratic equation,
m1m2 = `(y_1^2 - 3)/(x_1^2 - 5)`
But the tangents from P are at right angles
∴ m1m2 = – 1
∴ `(y_1^2 - 3)/(x_1^2 - 5)` = – 1
∴ `"y"_1^2 - 3 = -"x"_1^2 + 5`
∴ `"x"_1^2 + "y"_1^2 = 8`
Replacing x1 by x and y1 by y, the equation of required locus is x2 + y2 = 8.
APPEARS IN
संबंधित प्रश्न
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.
Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact
Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact
Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse
P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =
Select the correct option from the given alternatives:
The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.
Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.
The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.
The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.
A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.