Advertisements
Advertisements
प्रश्न
Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact
उत्तर
Given equation of the ellipse is x2 + 4y2 = 17.
∴ `x^2/17 + y^2/(17/4)` = 1
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1 we get
a2 = 17 and b2 = `17/4`
Given equation of line is 8y + x = 17,
i.e., y = `(-1)/8 "x" + 17/8`
Comparing this equation with y = mx + c, we get
m = `(-1)/8` and c = `17/8`
For the line y = mx + c to be a tangent to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1, we must have
c2 = a2 m2 + b2
c2 = `(17/8)^2 = 289/64`
a2m2 + b2 = `17((-1)/8)^2 + 17/4`
= `17/64 + 17/4`
= `289/64`
= c2
∴ The given line touches the given ellipse and point of contact is
`((-"a"^2"m")/"c", "b"^2/"c") = ((-17((-1)/8))/(17/8), (17/4)/(17/8))`
= (1, 2)
संबंधित प्रश्न
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6
Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.
Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.
P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.
The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
Answer the following:
Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)
The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.
The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.