Advertisements
Advertisements
प्रश्न
The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16
उत्तर
Given equation of the ellipse is 4x2 + y2 = 4
∴ `x^2/1 + y^2/4` = 1
Let P(θ1) and Q(θ2) be any two points on the given ellipse such that θ1 – θ2 = `(2pi)/3`
Equation of tangent at point P(θ1) is
`(xcostheta_1)/1 + (ysintheta_1)/2` = 1 ...(i)
Equation of tangent at point Q(θ2) is
`(xcostheta_2)/1 + (ysintheta_2)/2` = 1 ...(ii)
Multiplying equation (i) by cos θ2 and equation (ii) by cos θ1 and subtracting, we get
`y/2(sintheta_1 costheta_2 - sintheta_2 costheta_1)` = cos θ2 – cos θ1
∴ `y/2[sin(theta_1 - theta_2)]` = cos θ2 – cos θ1
∴ `y/2[sin((2pi)/3)]` = cos θ2 – cos θ1
∴ `y/2 sin(pi - pi/3)` = cos θ2 – cos θ1
∴ `y/2sin(pi/3)` = cos θ2 – cos θ1
∴ `y/2(sqrt(3)/2)` = cos θ2 – cos θ1
∴ `(sqrt(3)y)/4` = cos θ2 – cos θ1 ...(iii)
Multiplying equation (i) by sin θ2 and equation (ii) by sin θ1 and subtracting, we get
x(sin θ2 cos θ1 – cos θ2 sin θ1) = sin θ2 – sin θ1
∴ – x sin (θ1 – θ2) = sin θ2 – sin θ1
∴ `-xsin((2pi)/3)` = sin θ2 – sin θ1
∴ `-xsin(pi - pi/3)` = sin θ2 – sin θ1
∴ `-x sin pi/3` = sin θ2 – sin θ1
∴ `- sqrt(3)/2x` = sin θ2 – sin θ1 ...(iv)
Squaring (iii) and (iv) and adding, we get
`(3x^2)/4 + (3y^2)/16` = sin2 θ2 – 2 sin θ2 sin θ1 + sin2 θ1 + cos2 θ2 – 2 cos θ2 cos θ1 + cos2 θ1
= (cos2 θ2 + sin2 θ2) + (cos2 θ1 + sin2 θ1) – 2 cos θ2 cos θ1 – 2 sin θ2 sin θ1
= 1 + 1 – 2 (cos θ2 cos θ1 + sin θ2 sin θ1)
= 2 – 2 [cos (θ1 – θ2)]
= `2 - 2cos((2pi)/3)`
= `2 - 2((-1)/2)`
= 2 + 1
∴ `(3x^2)/4 + (3y^2)/16` = 3
∴ `x^2/4 + y^2/16` = 1
∴ 4x2 + y2 = 16, which is the required equation of locus.
APPEARS IN
संबंधित प्रश्न
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 12
Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6
Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).
Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse
P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.
Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes
Select the correct option from the given alternatives:
The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
Answer the following:
Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)
The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through `(sqrt(5), 4)` Then The radius of the directive circle is ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.
If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.
Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.