हिंदी

Find the lengths of the principal axes. co-ordinates of the focii equations of directrics length of the latus rectum distance between focii distance between directrices of the ellipse: 3x2 + 4y2 = 12 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12

योग

उत्तर

The equation of the ellipse is 3x2 + 4y2 = 12

i.e. `x^2/4 + y^2/3` = 1

Comparing with `x^2/"a"^2 + y^2/"b"^2` = 1, we get,

a2 = 4, b2 = 3

∴ a = 2, b = `sqrt(3)`

∴ a > b

i. Length of major axis = 2a = 2(2) = 4

Length of minor axis = 2b = `2sqrt(3)`

ii. Eccentricity = e = `sqrt("a"^2 - "b"^2)/"a"`

= `sqrt(4 - 3)/2`

= `1/2`

∴ ae = `2 xx 1/2` = 1

∴ coordinates of foci = (± ae, 0) = (± 1, 0).

iii. `"a"/"e" = 2/((1/2))` = 4

The equations of directrices are

x = `± "a"/"e"`

∴ x = ± 4

iv. Length of latus rectum = `(2"b"^2)/"a"`

= `(2 xx 3)/2`

= 3

v. Distance between foci = 2ae

= `2 xx 2 xx 1/2`

= 2

vi. Distance between directires = `(2"a")/"e"`

= `(2 xx 2)/((1/2))`

= 2 × 4

= 8

shaalaa.com
Conic Sections - Ellipse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.2 [पृष्ठ १६३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.2 | Q 1. (b) | पृष्ठ १६३

संबंधित प्रश्न

Answer the following:

Find the

  1. lengths of the principal axes
  2. co-ordinates of the foci
  3. equations of directrices
  4. length of the latus rectum
  5. distance between foci
  6. distance between directrices of the ellipse:

`x^2/25 + y^2/9` = 1


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×