Advertisements
Advertisements
प्रश्न
Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16
उत्तर
Given equation of the ellipse is `x^2/25 + y^2/16` = 1.
Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get
∴ a2 = 25, b2 = 16
∴ a = 5, b = 4
We know that e = `sqrt("a"^2 - "b"^2)/"a"`
∴ e = `sqrt(25 - 16)/5`
= `sqrt(9)/5`
= `3/5`
ae = `5(3/5)`
= 3
Co-ordinates of foci are S(ae, 0) and S'(– ae, 0),
i.e., S(3, 0) and S'(–3, 0)
Equations of tangents to the ellipse
`x^2/"a"^2 + y^2/"b"^2` = 1 having slope m are
y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`
Equation of one of the tangents to the ellipse is
y = `"m"x + sqrt(25"m"^2 + 16)`
∴ `"m"x - y + sqrt(25"m"^2 + 16)` = 0 ...(i)
p1 = length of perpendicular segment from S(3, 0) to the tangent (i)
= `|("m"(3) - 0 + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)|`
∴ p1 = `|(3"m" + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)|`
p2 = length of perpendicular segment from S'(–3, 0) to the tangent (i)
= `|("m"(-3) - 0 + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)|`
∴ p2 = `|(-3"m" + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)|`
∴ p1p2 = `|(3"m" + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)| |(-3"m" + sqrt(25"m"^2 + 16))/sqrt("m"^2 + 1)|`
= `((25"m"^2 + 16) - 9"m"^2)/("m"^2 + 1)`
= `(16("m"^2 + 1))/("m"^2 + 1)`
= 16
संबंधित प्रश्न
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrices
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 1
Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.
Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.
Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact
Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)
Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Select the correct option from the given alternatives:
Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at
Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8
Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.
On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.
The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.
The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.
Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.
Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.