English

Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that the line x – y = 5 is a tangent to the ellipse 9x2 + 16y2 = 144. Find the point of contact

Sum

Solution

Given equation of the ellipse is 9x2 + 16y2 = 144

  ∴ `x^2/16 + y^2/9` = 1

Comparing this equation with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 16 and b2 = 9

Given equation of line is x – y = 5, i.e., y = x – 5

Comparing this equation with y = mx + c, we get

m = 1 and c = – 5

For the line y = mx + c to be a tangent to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1, we must have

c2 = a2m2 + b2

c2 = (–5)2 = 25

a2m2 + b2 = 16(1)2 + 9 = 16 + 9 = 25 = c2 

∴ The given line is a tangent to the given ellipse and point of contact

= `((-"a"^2"m")/"c", "b"^2/"c")`

= `(((-16)(1))/-5, 9/-5)`

= `(16/5, (-9)/5)`.

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

RELATED QUESTIONS

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×