English

Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is 13. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.

Sum

Solution

Let the required equation of ellipse be

`x^2/"a"^2 + y^2/"b"^2` = 1, where a > b.

Given, eccentricity (e) = `1/3`

Distance between directrices = `(2"a")/"e"`

Given, distance between directrices = 18

∴ `(2"a")/"e"` = 18

∴ `(2"a")/(1/3)` = 18

∴ 6a = 18

∴ a = `18/6` = 3

∴ a2 = 9

Now, b2 = a2 (1 – e2)

= `9[1 - (1/3)^2]`

= `9(1 - 1/9)`

= `9(8/9)`

= 8

∴ The required equation of ellipse is `x^2/9 + y^2/8` = 1.

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

APPEARS IN

RELATED QUESTIONS

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The point on the ellipse x2 + 2y2 = 6 closest to the line x + y = 7 is (a, b). The value of (a + b) will be ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×