English

A tangent having slope –12 to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle - Mathematics and Statistics

Advertisements
Advertisements

Question

A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle

Sum

Solution

The equation of the ellipse is 3x2 + 4y2 = 12

i.e.`x^2/4 + y^2/3` = 1

Comparing with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 4, b2 = 3

The equation of tangent with slope m is

y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`

i.e., y = `"m"x  ± sqrt(4"m"^2 + 3)`   ...[∵ a2 = 4, b2 = 3]

∴ y = `-1/2x  ± sqrt(4(1/4) + 3)      ...[because "m" = -1/2]`

∴ y = `-x/2 ± 2`

∴ x + 2y ± 4 = 0     ...(1)

It meets X axis at A

∴ for A, put y = 0 in equation (1), we get,

x = ±4

∴ A = (±4, 0)

Similarly, B = (0, ±2)

∴ OA = 4, OB = 2

∴ area of ΔOAB = `1/2*"OA"*"OB"`

= `1/2*4*2`

= 4 sq. units

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

RELATED QUESTIONS

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

If the line 4x − 3y + k = 0 touches the ellipse 5x2 + 9y2 = 45 then the value of k is


Select the correct option from the given alternatives:

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the necessary length of the string and the distance between the pins respectively in cms, are ______.


The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


Let the ellipse `x^2/a^2 + y^2/b^2` = 1 has latus sectum equal 8 units – if the ellipse passes through   `(sqrt(5), 4)` Then The radius of the directive circle is ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×