Advertisements
Advertisements
Question
Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)
Solution
Let the required equation of ellipse be `x^2/"a"^2 + y^2/"b"^2` = 1, where a > b.
The ellipse passes through the points (–3, 1) and (2, –2).
∴ Substituting x = –3 and y = 1 in equation of ellipse, we get
`(-3)^2/"a"^2 + 1^2/"b"^2` = 1
∴ `9/"a"^2 + 1/"b"^2` = 1 ...(i)
Substituting x = 2 and y = –2 in equation of ellipse, we get
`2^2/"a"^2 + (-2)^2/"b"^2` = 1
∴ `4/"a"^2 + 4/"b"^2` = 1 ...(ii)
Let `1/"a"^2` = A and `1/"b"^2` = B
∴ Equations (i) and (ii) become
9A + B = 1 …(iii)
4A + 4B = 1 …(iv)
Multiplying (iii) by 4, we get
36A + 4B = 4 …(v)
Subtracting (iv) from (v), we get
32A = 3
∴ A = `3/32`
Substituting A = `3/32` in (iv), we get
`4(3/32) + 4"B"` = 1
∴ `3/8 + 4"B"` = 1
∴ 4B = `1 - 3/8`
∴ 4B = `5/8`
∴ B = `5/32`
Since `1/"a"^2` = A and `1/"b"^2` = B,
`1/"a"^2 = 3/32` and `1/"b"^2 = 5/32`
∴ a2 = `32/3` and b2 = `32/5`
∴ The required equation of ellipse is
`x^2/((32/3)) + y^2/((32/5))`, i.e., 3x2 + 5y2 = 32.
RELATED QUESTIONS
Answer the following:
Find the
- lengths of the principal axes
- co-ordinates of the foci
- equations of directrices
- length of the latus rectum
- distance between foci
- distance between directrices of the ellipse:
`x^2/25 + y^2/9` = 1
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
3x2 + 4y2 = 12
Find the
- lengths of the principal axes.
- co-ordinates of the focii
- equations of directrics
- length of the latus rectum
- distance between focii
- distance between directrices of the ellipse:
2x2 + 6y2 = 6
Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.
Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).
Find the eccentricity of an ellipse, if the length of its latus rectum is one-third of its minor axis.
Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci
Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16
A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle
Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144
Find the equation of the tangent to the ellipse `x^2/5 + y^2/4` = 1 passing through the point (2, –2)
Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).
Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).
Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.
Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.
Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.
Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles
Show that the locus of the point of intersection of tangents at two points on an ellipse, whose eccentric angles differ by a constant, is an ellipse
Select the correct option from the given alternatives:
If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =
Select the correct option from the given alternatives:
The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is
Select the correct option from the given alternatives:
The equation of the ellipse having eccentricity `sqrt(3)/2` and passing through (− 8, 3) is
Select the correct option from the given alternatives:
The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,
Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8
Answer the following:
Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)
On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.
If the tangents on the ellipse 4x2 + y2 = 8 at the points (1, 2) and (a, b) are perpendicular to each other, then a2 is equal to ______.
The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.
The equation of the ellipse with its centre at (1, 2), one focus at (6, 2) and passing through the point (4, 6) is ______.
If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan β/2` will be ______.
The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.
Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.
Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.
A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.