English

Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through (-5,2). - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the ellipse in standard form if the dist. between its directrix is 10 and which passes through `(-sqrt(5), 2)`.

Sum

Solution

Let the equation of the ellipse be

`x^2/"a"^2 + y^2/"b"^2` = 1    ...(1)

Then distance between directrices = `(2"a")/"e"` = 10

∴ a = 5e  ...(2)

Since the ellipse passes through the point `(-sqrt(5), 2)`, we get

`5/"a"^2 + 4/"b"^2` = 1

∴ 5b2 + 4a2 = a2b2

∴ 5a2(1 – e2) + 4a2 = a2 · a2(1 – e2)

Dividing by a2, we get,

5 – 5e2 + 4 = a2(1 – e2) = 25e2(1 – e2)  ... [By (2)]

∴ 9 – 5e2 = 25e2 – 25e4

∴ 25e4 – 30e2 + 9 = 0

∴ (5e2 – 3)2 = 0

∴ 5e2 – 3 = 0

∴ e2 = `3/5`

∴ from (2), a2 = 25e2 = `25(3/5)` = 15

∴ b2 = a2 (1 –  e2) = `15(1 - 3/5)` = 6

∴ from (1), the equation of the required ellipse is

`x^2/15 + y^2/6` = 1.

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

APPEARS IN

RELATED QUESTIONS

Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii
  3. equations of directrics
  4. length of the latus rectum
  5. distance between focii
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 12


Find the

  1. lengths of the principal axes.
  2. co-ordinates of the focii 
  3. equations of directrics 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

2x2 + 6y2 = 6


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if the distance between directrix is 18 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if the distance between foci is 6 and the distance between directrix is `50/3`.


Find the equation of the ellipse in standard form if the latus rectum has length of 6 and foci are (±2, 0).


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


Show that the product of the lengths of the perpendicular segments drawn from the foci to any tangent line to the ellipse `x^2/25 + y^2/16` = 1 is equal to 16


Show that the line 8y + x = 17 touches the ellipse x2 + 4y2 = 17. Find the point of contact


Determine whether the line `x + 3ysqrt(2)` = 9 is a tangent to the ellipse `x^2/9 + y^2/4` = 1. If so, find the co-ordinates of the pt of contact


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.


Find the equation of the tangent to the ellipse 5x2 + 9y2 = 45 which are ⊥ to the line 3x + 2y + y = 0.


Find the equation of the locus of a point the tangents form which to the ellipse 3x2 + 5y2 = 15 are at right angles


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

If `"P"(pi/4)` is any point on he ellipse 9x2 + 25y2 = 225. S and S1 are its foci then SP.S1P =


Select the correct option from the given alternatives:

The equation of the ellipse having foci (+4, 0) and eccentricity `1/3` is


Select the correct option from the given alternatives:

The equation of the tangent to the ellipse 4x2 + 9y2 = 36 which is perpendicular to the 3x + 4y = 17 is,


Answer the following:

Find the equation of the tangent to the ellipse x2 + 4y2 = 100 at (8, 3)


Let PQ be a focal chord of the parabola y2 = 4x such that it subtends an angle of `π/2` at the point (3, 0). Let the line segment PQ be also a focal chord of the ellipse E: `x^2/a^2 + y^2/b^2` = 1, a2 > b2. If e is the eccentricity of the ellipse E, then the value of `1/e^2` is equal to ______.


On the ellipse `x^2/8 + "y"^2/4` = 1 let P be a point in the second quadrant such that the tangent at P to the ellipse is perpendicular to the line x + 2y = 0. Let S and S' be the foci of the ellipse and e be its eccentricity. If A is the area of the triangle SPS' then, the value of (5 – e2). A is ______.


The eccentricity, foci and the length of the latus rectum of the ellipse x2 + 4y2 + 8y – 2x + 1 = 0 are respectively equal to ______.


If the chord through the points whose eccentric angles are α and β on the ellipse `x^2/a^2 + y^2/b^2` = 1 passes through the focus (ae, 0), then the value of tan `α/2 tan  β/2` will be ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


Let the eccentricity of an ellipse `x^2/a^2 + y^2/b^2` = 1, a > b, be `1/4`. If this ellipse passes through the point ```(-4sqrt(2/5), 3)`, then a2 + b2 is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×