English

Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the tangent to the ellipse x2 + 4y2 = 9 which are parallel to the line 2x + 3y – 5 = 0.

Sum

Solution

We know that the equations of tangents with slope m to the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 are

y = `"m"x ± sqrt("a"^2"m"^2 + "b"^2)`   ...(1)

The equation of the ellipse is x2 + 4y2 = 9

∴ `x^2/9 + y^2/((9/4)` = 1

Comparing this with `x^2/"a"^2 + y^2/"b"^2` = 1, we get

a2 = 9, b2 = `9/4`

Slope of 2x + 3y – 5 = 0 is `-2/3`

The required tangent is parallel to it

∴ its slope = m = `-2/3`

Using (1), the required equations of tangents are

y = `-(2x)/3 ± sqrt(9 xx 4/9 + 9/4)`

∴ y = `-(2x)/3 ± sqrt(25/4)`

∴ y = `-(2x)/3 ± 5/2`

∴ 6y = – 4x ± 15

∴ 4x + 6y = ± 15

shaalaa.com
Conic Sections - Ellipse
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.2 [Page 163]

APPEARS IN

RELATED QUESTIONS

Answer the following:

Find the

  1. lengths of the principal axes
  2. co-ordinates of the foci
  3. equations of directrices
  4. length of the latus rectum
  5. distance between foci
  6. distance between directrices of the ellipse:

`x^2/25 + y^2/9` = 1


Find the 

  1. lengths of the principal axes. 
  2. co-ordinates of the focii 
  3. equations of directrices 
  4. length of the latus rectum
  5. distance between focii 
  6. distance between directrices of the ellipse:

3x2 + 4y2 = 1


Find the equation of the ellipse in standard form if eccentricity = `3/8` and distance between its foci = 6


Find the equation of the ellipse in standard form if the minor axis is 16 and eccentricity is `1/3`.


Find the equation of the ellipse in standard form if passing through the points (−3, 1) and (2, −2)


Find the equation of the ellipse in standard form if eccentricity is `2/3` and passes through `(2, −5/3)`.


Find the eccentricity of an ellipse if the distance between its directrix is three times the distance between its foci


A tangent having slope `–1/2` to the ellipse 3x2 + 4y2 = 12 intersects the X and Y axes in the points A and B respectively. If O is the origin, find the area of the triangle


Find k, if the line 3x + 4y + k = 0 touches 9x2 + 16y2 = 144


Find the equation of the tangent to the ellipse 4x2 + 7y2 = 28 from the point (3, –2).


Find the equation of the tangent to the ellipse 2x2 + y2 = 6 from the point (2, 1).


Find the equation of the tangent to the ellipse `x^2/25 + y^2/4` = 1 which are parallel to the line x + y + 1 = 0.


Find the equation of the tangent to the ellipse x2 + 4y2 = 20, ⊥ to the line 4x + 3y = 7.


Tangents are drawn through a point P to the ellipse 4x2 + 5y2 = 20 having inclinations θ1 and θ2 such that tan θ1 + tan θ2 = 2. Find the equation of the locus of P.


P and Q are two points on the ellipse `x^2/"a"^2 + y^2/"b"^2` = 1 with eccentric angles θ1 and θ2. Find the equation of the locus of the point of intersection of the tangents at P and Q if θ1 + θ2 = `π/2`.


The eccentric angles of two points P and Q the ellipse 4x2 + y2 = 4 differ by `(2pi)/3`. Show that the locus of the point of intersection of the tangents at P and Q is the ellipse 4x2 + y2 = 16


Find the equations of the tangents to the ellipse `x^2/16 + y^2/9` = 1, making equal intercepts on co-ordinate axes


Select the correct option from the given alternatives:

The equation of the ellipse is 16x2 + 25y2 = 400. The equations of the tangents making an angle of 180° with the major axis are


Select the correct option from the given alternatives:

Centre of the ellipse 9x2 + 5y2 − 36x − 50y − 164 = 0 is at


Find the equation of the ellipse in standard form if the length of major axis 10 and the distance between foci is 8


The length of the latusrectum of an ellipse is `18/5` and eccentncity is `4/5`, then equation of the ellipse is ______.


The tangent and the normal at a point P on an ellipse `x^2/a^2 + y^2/b^2` = 1 meet its major axis in T and T' so that TT' = a then e2cos2θ + cosθ (where e is the eccentricity of the ellipse) is equal to ______.


Tangents are drawn from a point on the circle x2 + y2 = 25 to the ellipse 9x2 + 16y2 – 144 = 0 then find the angle between the tangents.


The points where the normals to the ellipse x2 + 3y2 = 37 are parallel to the line 6x – 5y = 2 are ______.


The normal to the ellipse `x^2/a^2 + y^2/b^2` = 1 at a point P(x1, y1) on it, meets the x-axis in G. PN is perpendicular to OX, where O is origin. Then value of ℓ(OG)/ℓ(ON) is ______.


The ratio of the area of the ellipse and the area enclosed by the locus of mid-point of PS where P is any point on the ellipse and S is the focus of the ellipse, is equal to ______.


If P1 and P2 are two points on the ellipse `x^2/4 + y^2` = 1 at which the tangents are parallel to the chord joining the points (0, 1) and (2, 0), then the distance between P1 and P2 is ______.


Eccentricity of ellipse `x^2/a^2 + y^2/b^2` = 1, if it passes through point (9, 5) and (12, 4) is ______.


Equation of the ellipse whose axes are along the coordinate axes, vertices are (± 5, 0) and foci at (± 4, 0) is ______.


A focus of an ellipse is at the origin. The directrix is the line x = 4 and the eccentricity is `1/2`. Then the length of the semi-major axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×