Advertisements
Advertisements
प्रश्न
Find the equation of the locus of the point P such that the line segment AB, joining the points A(1, −6) and B(4, −2), subtends a right angle at P
उत्तर
Given A(1, – 6) and B(4, – 2).
Let P(h, k) be a point such that the line segment AB subtends a right angle at P.
∴ ∆APB is a right-angled triangle.
AB2 = AP2 + BP2 ......(1)
AB2 = (4 – 1)2 + (– 2 + 6)2
AB2 = 32 + 42 = 9 + 16 = 25
AP2 = (h – 1)2 + (k + 6)2
BP2 = (h – 4)2 + (k + 2)2
(1) ⇒
25 = (h – 1)2 + (k + 6)2 + (h – 4)2 + (k + 2)2
25 = h2 – 2h + 1 + k2 + 12k + 36 + h2 – 8h + 16 + k2 + 4k + 4
25 = 2h2 + 2k2 – 10h + 16k + 57
2h2 + 2k2 – 10h + 16k + 57 – 25 = 0
2h2 + 2k2 – 10h + 16k + 32 = 0
h2 + k2 – 5h + 8k + 16 =0
The locus of P(h, k) is obtained by replacing h by x and k by y.
∴ The required locus is x2 + y2 – 5x + 8y + 16 = 0
APPEARS IN
संबंधित प्रश्न
Find the locus of P, if for all values of α, the co-ordinates of a moving point P is (9 cos α, 9 sin α)
Find the locus of P, if for all values of α, the co-ordinates of a moving point P is (9 cos α, 6 sin α)
Find the locus of a point P that moves at a constant distant of two units from the x-axis
If θ is a parameter, find the equation of the locus of a moving point, whose coordinates are x = a cos3θ, y = a sin3θ
Find the value of k and b, if the points P(−3, 1) and Q(2, b) lie on the locus of x2 − 5x + ky = 0
If O is origin and R is a variable point on y2 = 4x, then find the equation of the locus of the mid-point of segment OR
If P(2, – 7) is given point and Q is a point on 2x2 + 9y2 = 18 then find the equations of the locus of the midpoint of PQ
If the points P(6, 2) and Q(– 2, 1) and R are the vertices of a ∆PQR and R is the point on the locus y = x2 – 3x + 4, then find the equation of the locus of centroid of ∆PQR
If Q is a point on the locus of x2 + y2 + 4x – 3y +7 = 0, then find the equation of locus of P which divides segment OQ externally in the ratio 3 : 4 where O is origin
Find the points on the locus of points that are 3 units from x-axis and 5 units from the point (5, 1)
The sum of the distance of a moving point from the points (4, 0) and (−4, 0) is always 10 units. Find the equation of the locus of the moving point
Choose the correct alternative:
The equation of the locus of the point whose distance from y-axis is half the distance from origin is
Choose the correct alternative:
Which of the following equation is the locus of (at2, 2at)
Choose the correct alternative:
If the point (8,−5) lies on the locus `x^2/1 - y^2/25` = k, then the value of k is