Advertisements
Advertisements
प्रश्न
Find the LCM pair of the following polynomials
a2 + 4a – 12, a2 – 5a + 6 whose GCD is a – 2
उत्तर
p(x) = a2 + 4a – 12
= a2 + 6a – 2a – 12
= a (a + 6) – 2(a + 6)
= (a + 6) (a – 2)
g(x) = a2 – 5a + 6
= a2 – 3a – 2a + 6
= a(a – 3) – 2 (a – 3)
= (a – 3) (a – 2)
L.C.M. = `("p"(x) xx "g"(x))/("G"."C"."D".)`
= `(("a" + 6)("a" - 2) xx ("a" - 3)("a" - 2))/(("a" - 2))`
= (a + 6) (a – 3) (a – 2)
APPEARS IN
संबंधित प्रश्न
Find the G.C.D. of the given polynomials
x4 – 1, x3 – 11x2 + x – 11
Find the G.C.D. of the given polynomials
3x3 + 3x2 + 3x + 3, 6x3 + 12x2 + 6x + 12
Find the L.C.M. of the given expressions
16m, – 12m2n2, 8n2
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
(x3 – 1) (x + 1), (x3 + 1)
Find the LCM and GCD for the following and verify that f(x) × g(x) = LCM × GCD
(x2y + xy2), (x2 + xy)
Find the LCM pair of the following polynomials
x4 – 27a3x, (x – 3a)2 whose GCD is (x – 3a)
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
a3 – 10a2 + 11a + 70 | a – 7 | a2 – 12a + 35 |
Given the LCM and GCD of the two polynomials p(x) and q(x) find the unknown polynomial in the following table
LCM | GCD | p(x) | q(x) |
(x4 – y4)(x4 + x2y2 + y2) | (x2 – y2) | (x4 – y4)(x2 + y2 – xy) |
If (x – 6) is the HCF of x2 – 2x – 24 and x2 – kx – 6 then the value of k is
Find the GCD of the following by division algorithm
2x4 + 13x3 + 27x2 + 23x + 7, x3 + 3x2 + 3x + 1, x2 + 2x + 1